Topology Semestral Examination 26th November 2012

Instructions: All questions carry equal marks.

1. Is the product space $[0,1]\times[0,1)$ homeomorphic to the product $[0,1)\times[0,1)$? Justify your answer.

Let X denote the set of diadic rationals, i.e., the rational numbers of the type $\frac{m}{2^n}$ for integers m and n. Let Y denote the remaining rational numbers and Z denote the set of irrational numbers. Let τ denote the topology on the set of real numbers \mathbb{R} generated by the following sets:

- (i): every open U in the standard topology
- (ii): the sets X and Y.
- (iii): sets of the type $\{z\} \cup \{w \in X \cup Y | |w-z| < \delta\}$ for $\delta > 0$ and $z \in Z$.

Prove that \mathbb{R} is connected in this topology.

- **3.** Define a topology τ on [-1,1] as follows. A subset U of [-1,1] is open if and only if either U contains (-1,1) or U does not contain 0. Let X denote the corresponding topological space. Answer following questions with justifications.
 - (a): Is X compact?
 - (b): Is X connected?
 - (c): Is X first countable?
 - (d): Is X second countable?
 - (e): Is X metrizable?
- **4.** If $p_1: X \to Y$ and $p_2: X_1 \to Y_1$ are covering maps, then prove that $p_1 \times p_2$ is also a covering map.
- 5. What is the fundamental group of $S^1 \times \mathbb{R}$? Justify your answer.